click me!

Plano-Concave Cylindrical Lens

  • Substrate materials: Fine Annealed N-BK7
  • Ideal for one-dimensional magnification of images, laser line generation, and diode laser beam shaping
  • Various focal lengths (-3.9mm to -700mm) and a large selection of dimensions
  • Standard coating options: uncoated, 350-650nm, 650-1050nm, 1050-1580nm, or custom bandwidths
  • Custom Plano Concave Cylindrical Lenses made from Fused Silica, CaF2, BaF2, MgF2, ZnSe, etc. are also available 
  • Applications: Laser scanners, diode lasers, optical metrologies, spectroscopes, etc.
Inquire for custom product  
Code Material Size CT ET Focal length Coating Unit Price Delivery Cart
1112-001 N-BK7 8mm(L)x4mm(H) 2.0mm 2.7mm -3.9mm 650-1050nm AR Coating $24.5 1~2 Weeks
1112-002 N-BK7 6mm(L)x4mm(H) 2.0mm 2.6mm -4.0mm Uncoated $17.5 1 Week
1112-003 N-BK7 8mm(L)x4mm(H) 2.0mm 2.6mm -4.0mm Uncoated $17.5 1 Week
1112-004 N-BK7 8mm(L)x4mm(H) 2.0mm 2.6mm -4.0mm 650-1050nm AR Coating $24.5 1~2 Weeks
1112-005 N-BK7 6mm(L)x4mm(H) 2.0mm 2.4mm -5.8mm 350-650nm AR Coating $24.5 1~2 Weeks
1112-006 N-BK7 12mm(L)x6mm(H) 2.0mm 3.2mm -6.4mm Uncoated $17.5 1 Week
1112-007 N-BK7 14mm(L)x7mm(H) 2.0mm 3.4mm -7.7mm Uncoated $17.5 1 Week
1112-008 N-BK7 12mm(L)x10mm(H) 2.0mm 4.8mm -9.7mm 650-1050nm AR Coating $24.5 1~2 Weeks
1112-009 N-BK7 20mm(L)x10mm(H) 2.0mm 4.8mm -9.7mm 1050-1580nm AR Coating $35.0 1~2 Weeks
1112-010 N-BK7 12mm(L)x10mm(H) 2.0mm 3.8mm -12.7mm Uncoated $17.5 1 Week
1112-011 N-BK7 12mm(L)x10mm(H) 2.0mm 3.8mm -12.7mm 350-650nm AR Coating $24.5 1~2 Weeks
1112-012 N-BK7 12mm(L)x10mm(H) 2.0mm 3.8mm -12.7mm 650-1050nm AR Coating $24.5 1~2 Weeks
1112-013 N-BK7 15mm(L)x13mm(H) 2.0mm 5.3mm -13.7mm 1050-1580nm AR Coating $35.0 1~2 Weeks
1112-014 N-BK7 26mm(L)x13mm(H) 2.0mm 5.3mm -13.7mm Uncoated $28.0 1 Week
1112-015 N-BK7 12mm(L)x10mm(H) 2.0mm 3.4mm -15.0mm 650-1050nm AR Coating $24.5 1~2 Weeks
1112-016 N-BK7 20mm(L)x10mm(H) 2.0mm 3.4mm -15.0mm Uncoated $24.5 1 Week
1112-017 N-BK7 21mm(L)x19mm(H) 2.0mm 7.9mm -19.0mm Uncoated $28.0 1 Week
1112-018 N-BK7 21mm(L)x19mm(H) 2.0mm 7.9mm -19.0mm 350-650nm AR Coating $38.5 1~2 Weeks
1112-019 N-BK7 17mm(L)x15mm(H) 2.0mm 4.7mm -20.0mm 650-1050nm AR Coating $33.5 1~2 Weeks
1112-020 N-BK7 17mm(L)x15mm(H) 2.0mm 4.7mm -20.0mm 1050-1580nm AR Coating $35.0 1~2 Weeks
1112-021 N-BK7 30mm(L)x15mm(H) 2.0mm 4.7mm -20.0mm Uncoated $28.0 1 Week
1112-022 N-BK7 30mm(L)x15mm(H) 2.0mm 4.7mm -20.0mm 350-650nm AR Coating $38.5 1~2 Weeks
1112-023 N-BK7 30mm(L)x15mm(H) 2.0mm 4.7mm -20.0mm 650-1050nm AR Coating $38.5 1~2 Weeks
1112-024 N-BK7 30mm(L)x15mm(H) 2.0mm 4.7mm -20.0mm 1050-1580nm AR Coating $40.5 1~2 Weeks
1112-025 N-BK7 15mm(L)x12.5mm(H) 2.0mm 3.5mm -22.2mm Uncoated $24.5 1 Week
1112-026 N-BK7 25mm(L)x12.5mm(H) 2.0mm 3.5mm -22.2mm Uncoated $28.0 1 Week
1112-027 N-BK7 12mm(L)x10mm(H) 2.0mm 2.8mm -25.0mm Uncoated $17.5 1 Week
1112-028 N-BK7 12mm(L)x10mm(H) 2.0mm 2.8mm -25.0mm 650-1050nm AR Coating $24.5 1~2 Weeks
1112-029 N-BK7 12mm(L)x10mm(H) 2.0mm 2.8mm -25.0mm 1050-1580nm AR Coating $25.5 1~2 Weeks
1112-030 N-BK7 20mm(L)x10mm(H) 2.0mm 2.8mm -25.0mm Uncoated $24.5 1 Week
1112-031 N-BK7 20mm(L)x10mm(H) 2.0mm 2.8mm -25.0mm 1050-1580nm AR Coating $35.0 1~2 Weeks
1112-032 N-BK7 52mm(L)x26mm(H) 2.0mm 6.5mm -38.1mm Uncoated $42.0 1 Week
1112-033 N-BK7 12mm(L)x10mm(H) 2.0mm 2.5mm -40.0mm Uncoated $17.5 1 Week
1112-034 N-BK7 12mm(L)x10mm(H) 2.0mm 2.5mm -40.0mm 350-650nm AR Coating $24.5 1~2 Weeks
1112-035 N-BK7 12mm(L)x10mm(H) 2.0mm 2.5mm -40.0mm 650-1050nm AR Coating $24.5 1~2 Weeks
1112-036 N-BK7 22mm(L)x20mm(H) 2.0mm 3.8mm -50.0mm Uncoated $28.0 1 Week
1112-037 N-BK7 22mm(L)x20mm(H) 2.0mm 3.8mm -50.0mm 1050-1580nm AR Coating $40.5 1~2 Weeks
1112-038 N-BK7 40mm(L)x20mm(H) 2.0mm 3.8mm -50.0mm Uncoated $42.0 1 Week
1112-039 N-BK7 40mm(L)x20mm(H) 2.0mm 3.8mm -50.0mm 1050-1580nm AR Coating $61.0 1~2 Weeks
1112-040 N-BK7 32mm(L)x30mm(H) 2.0mm 6.5mm -50.0mm Uncoated $28.0 1 Week
1112-041 N-BK7 53mm(L)x50.8mm(H) 2.0mm 19.9mm -50.8mm Uncoated Inquire 1 Week
1112-042 N-BK7 32mm(L)x30mm(H) 2.0mm 5.6mm -60.0mm 650-1050nm AR Coating $38.5 1~2 Weeks
1112-043 N-BK7 60mm(L)x30mm(H) 2.0mm 5.6mm -60.0mm Uncoated $42.0 1 Week
1112-044 N-BK7 62mm(L)x60mm(H) 2.0mm 23.5mm -60.0mm 1050-1580nm AR Coating Inquire 1~2 Weeks
1112-045 N-BK7 53mm(L)x50.8mm(H) 2.0mm 13.6mm -62.9mm Uncoated Inquire 1 Week
1112-046 N-BK7 95mm(L)x50.8mm(H) 2.0mm 13.6mm -62.9mm Uncoated Inquire 1 Week
1112-047 N-BK7 32mm(L)x30mm(H) 2.0mm 5.0mm -70.0mm Uncoated $28.0 1 Week
1112-048 N-BK7 32mm(L)x30mm(H) 2.0mm 5.0mm -70.0mm 350-650nm AR Coating $38.5 1~2 Weeks
1112-049 N-BK7 60mm(L)x30mm(H) 2.0mm 5.0mm -70.0mm Uncoated $42.0 1 Week
1112-050 N-BK7 53mm(L)x50.8mm(H) 2.0mm 11.1mm -75.0mm Uncoated Inquire 1 Week
1112-051 N-BK7 90mm(L)x50.8mm(H) 2.0mm 11.1mm -75.0mm Uncoated Inquire 1 Week
1112-052 N-BK7 40mm(L)x20mm(H) 3.0mm 4.1mm -80.0mm Uncoated $42.0 1 Week
1112-053 N-BK7 32mm(L)x30mm(H) 3.0mm 5.1mm -100.0mm 1050-1580nm AR Coating $40.5 1~2 Weeks
1112-054 N-BK7 32mm(L)x30mm(H) 3.0mm 4.6mm -130.0mm Uncoated $28.0 1 Week
1112-055 N-BK7 32mm(L)x30mm(H) 3.0mm 4.4mm -150.0mm Uncoated $28.0 1 Week
1112-056 N-BK7 60mm(L)x30mm(H) 3.0mm 4.4mm -150.0mm Uncoated $42.0 1 Week
1112-057 N-BK7 32mm(L)x30mm(H) 3.0mm 4.0mm -200.0mm Uncoated $28.0 1 Week
1112-058 N-BK7 32mm(L)x30mm(H) 3.0mm 4.0mm -200.0mm 650-1050nm AR Coating $38.5 1~2 Weeks
1112-059 N-BK7 60mm(L)x30mm(H) 3.0mm 3.8mm -250.0mm Uncoated $42.0 1 Week
1112-060 N-BK7 32mm(L)x30mm(H) 3.0mm 3.3mm -700.0mm Uncoated $28.0 1 Week

A Plano Concave Cylindrical Lens is a special kind of plano-concave optical lens component in a columnar shape, with one plane side and one concave side. As a plano-concave lens, a plano-concave cylindrical lens has an inward bent curve, contributing to a negative effective focal length (EFL), and both of them perform best at infinite absolute conjugate ratios and become not advantageous when below 5:1. The distinguishment is that the former diverges lights in two dimensions, the later expands light beam along a one-dimensional single axis. 

One of the critical functions of a Plano-concave cylindrical lens is transforming two-dimensional light beams into one-dimensional lines. A classic example would be projecting a collimated laser beam onto the concave side of the cylindrical lens, then on the image side the beam will be stretched and magnified into a thin line. Plano-concave cylindrical lenses are the best options for coupling into a slit input, and one-dimensional image stretching. These Plano-concave cylindrical lenses are taking more and more sections in the markets like laser scanners, spectroscopies, dye lasers, acousto-optics, optical processors, and other similar applications.

Another application of Plano-concave cylindrical lenses is to correct for astigmatism and the elliptical shape of the laser beam. Collimate and circularize the output of a laser diode. The flaw of the elliptical output beam shape is intimate in Edge-emitting laser diodes, this is a designed weakness, which is undesirable to the users. Elliptical beams, instead of ideal circular beams, have greater spot sizes, which means lower power efficiencies. Experiments prove, that using a pair of orthogonal Plano-concave cylindrical lenses results in a circularized and balance-structured beam with high beam qualities with transmitted power. In addition, the cylindrical lens pair compensated for much of the beam's astigmatism.

N-BK7 or its equivalent known as H-K9L is a ROHS-compliant borosilicate crown glass with superior optical excellence and the glass is fine annealed and polished to tight tolerances to meet the demanding tolerances. The most attractive advantages of N-BK7 are its high optical homogeneities and high transmission to VIS and NIR spectra. Besides, the hardness, chemical and thermal resilience of N-BK7 are also remarkable, it contains low levels of inclusions and bubbles, therefore N-BK7 is excellent for making high-precision optical lenses. 

This page features Hangzhou Shalom EO’s stocked N-BK7 Plano-Concave Cylindrical Lenses. The various focal lengths range from -3.9mm to -700mm, while the dimensions also come in diversities to accommodate your requirements. Standard coating options include Uncoated, 350-650nm, 650-1050 nm, and 1050-1580nm anti-reflection coatings to elevate the transmission of the lens substrate, while custom coating bandwidths could be tailored through inquiries. With unceasing devotion and engineering intelligence, Shalom EO has earned credits among researchers and clients around the globe. Before shipment, the cylindrical lenses will undergo a stringent in-house inspection in our clean room using Zygo interferometers and other equipment to secure your interest. 

Besides the off-the-shelf PCV cylindrical lens made from N-BK7, we also provide custom plano concave cylindrical lens made from a portfolio of other materials including Fused Silica, CaF2, BaF2, MgF2, ZnSe, etc. With BBAR coatings, V-coatings, and cheaper MgF2 AR coatings. 


Application Notes:


Figure 1. A Plano concave cylindrical lens 

1. To minimize spherical aberration, engineers from Shalom EO suggest that incoming light beams should be projected to the curved side of the lens for diverging.

2. Diode Laser Shaping

A laser diode (a P-i-N diode), with electrical current flows between anodes cathodes on top of and below the semiconductor material substrate, in an intrinsic manner, creates Fresnel surface reflections leading to an elliptical-shaped radiation of laser beam as if emitted from a rectangular aperture. An elliptical beam implies a either greater vertical or horizontal component. The two components can’t be equivalent. This is problematic because this decreases the irradiance, optical homogeneities, and beam qualities of the laser output, for instance, if the laser is utilized for pattern engraving, then elliptical beams will lower the working accuracies and efficiencies to a severe extent. The attenuation of input intensities, and aberrations to the Gaussian beam profile of lasers after circularization should all be taken into concerns.

A great measure to correct the situation is using a pair of plano-convex/concave cylindrical lenses. The cause of the elliptical beam shape is a rectangular aperture derived from Fresnel reflections. Now assume the angle between the optical axis and the vertical axis of the ellipse is θ1, and the angle between the optical axis and the horizontal axis of the ellipse is θ2. With the condition given, two cylindrical plano-convex/-concave lenses positioned and with focal lengths f2/f1 = θ1/θ2 can circularize the elliptical laser beam. In fact, the cylindrical lens pair provides a well-circularized beam, balanced circularization, and beam qualities with transmitted power. In addition to the compensation for much of the beam's astigmatism. 

3. Linear Magnification

Both plano-concave cylindrical lenses and plano-convex cylindrical lenses can realize spot-to-line magnification or line-to-point condensation. E.g. a PCV cylindrical lens transforms a beam with an original diameter of a1 on the object side to a thin line on the image side according to a virtual focus, and the length of the line could be adjusted via changing the image distance.

Specifications:

TypePlano-Concave Cylindrical LensesMaterialN-BK7
Clear Aperture>90%Size Tolerance+0/-0.1mm
Thickness Tolerance±0.2mmSurface Irregularityλ/2 @ 632.8 nm
Surface Quality60/40 S/DFocal Length Tolerance±1%
Chamfer<0.2mm x 45 degreeCentering Error<3 arcmin

Lens Selection Tutorial:

There are various classifications of optical lenses, and either as a user or an engineer, one needs to evaluate the pros and cons of lens classifications in order to optimize the optical system. First, What is a lens? An optical lens is a transparent optical component that converges or diverges light emitted from a peripheral object. The transmitted light then forms a real or virtual image of the object. Optical lenses can be divided into three major categories: convex lenses, and concave lenses. Convex lenses have positive focal length and focus light, whilst concave lenses have negative focal length and expand collimated light beam. Further subdivided, it can be classified into the plano-convex lens, plano-concave lens, double-convex lens, double-concave lens, meniscus lens, ball/half-ball lens, achromatic doublet lens, cylindrical plano-convex lens/plano-concave lens, rod lens, aspheric lens, etc. This article enumerates the different lens classifications, exploring their characteristics, and the appropriate context to use them. 


Focal Length and Conjugate Ratio 

The focal length is the length from the optical center to the point where light parallel light beam converges on the optical axis. A convex lens has a positive focal lens, and a concave lens has a negative focal lens and focuses light into a virtual focal point. The conjugate ratio is defined as the ratio of the object distance (the distance between the object and the lens on the optical axis) and the image distance (the distance between the image and the lens on the optical axis). Light paths from the object to the image are reversible. An object placed at the focal point of a lens results in an infinite conjugate ratio, while an object placed at twice the focal length results in an image formed at twice the focal length, giving a conjugate ratio of 1:1.

Note: You might want to learn more about the basic concepts relevant to lens selection, such as Field of View (FOV), Image Distortion, Spherical Aberration and Coma: Spherical aberrations, etc. see our Lens Selection Tutorial. Or if you are looking for a reference to the selection of the substrate materials, see our Optical Substrate Material Selection Guide.


lens type conjugate ratio

Table1. Lens Types and conjugate ratios

Plano Convex Lens:

Plano-convex (PCX) lens is an optical lens with one plane face and one convex face, and a positive focal length, utilized for collecting, focusing collimated lights, collimating lights from a point source, or reducing the focal length of a lens group. Compared to Biconvex lenses,  Plano-convex lenses have two unidentical sides and therefore work best for an infinite absolute conjugate ratio (objective distance: image distance). However, plano-convex lenses still reduce spherical aberrations to a quite low extent when the absolute conjugate ratio is greater than 5:1. For conjugate ratio below 5:1, consider using plano-convex lenses in pairs or a biconvex lens. Plano-convex lenses are mainly used for monochromatic light, such as lasers; Plano-convex lens is often used to converge parallel light or convert point light sources into parallel light. when using the lens to focus collimated lights, the collimated lights should be projected to the curved surface of the lens. 


plano convex lens


Plano Concave Lens:

plano-concave lens is a lens with one side flat and a concave side. A plano-concave lens has a negative focal length, which diverges the beam. Therefore, it can be utilized in to expand the beam, project light and lengthen the focal length of the optical system. Plano-concave lenses are often incorporated into Galilean beam expanders, also as components to increase the focal length of an optical instrument, or balance out the spherical aberration, improving image qualities. When the absolute conjugate ratio is greater than 5:1 (that is, the absolute value of objective distance: image distance), a plano-concave lens is the best type of negative lens to decrease spherical aberration, coma, and distortion. When applied to diverge a collimated light beam, the curved surface should face the light source (Or in other words, the flat side should point to the focal plane you intend to modulate) so that light bends gradually and spherical aberration is reduced to the greatest extent. 

plano concave lens


Biconvex Lens:

A Biconvex Lens, also known as a Double Convex Lens, is an optical lens with two spherical sides that have the same curvature radii. The major uses of  Biconvex lenses include laser beam modulation, light focus, and imaging. Biconvex lenses have positive focal lengths and converge collimated light to a point. When the absolute finite conjugate ratio is equal to or near 1:1, biconvex lenses are advised. When the object distance and image distance are equivalent in absolute terms, biconvex lenses are the best option for conjugate ratios between 1:5 and 5:1. If not, plano-convex lenses are preferable since their asymmetric shapes help to reduce spherical aberrations. The focal lengths of the biconvex lenses could be calculated using the formula: f= (R1*R2)/((n-1)*(R2-R1)). Their curvatures on both sides are equal and are often used to gather light from a point source or transmit images to other optical systems. Since the object distance and the image distance are equivalent or approximately equivalent, distortion can be minimized.


biconvex lens diagram


Biconcave Lens:

A Biconcave Lens or Double Concave Lens are optical lens with two inward-bent spherical surfaces of identical radii of curvature. A double concave lens has a negative focal length and diverges a collimated light beam to the virtual focal point (that is the point at which the extension lines of the diverging light path intersect at the object side of the concave lens) and increases the focal lengths of a lens group. The usages of Biconcave lenses are diversified, encompassing divergence of collimated or focused light beams, and beam diameter modulation (e.g. Galilean beam expanders), and because of their negative focal lengths, bi-concave lenses could also be applied in the correction of spherical aberration of optical assemblies. Due to its symmetric structure, a double concave lens works best when the conjugate ratio (object distance: image distance) is close or equal to 1:1. In such situations, the distortion, spherical/chromatic aberration, and coma could be offset as a result of the equilibrium of the lenses. Whilst, when the intended magnification ratio is <1/5 or >5, a plano concave lens will be a better alternative.


biconcave lens diagram


Meniscus Lens:

A Meniscus Lens or a Convex-concave Lens is an optical lens consisting of one concave and one convex side, and the two sides have different radii of curvature according to which the meniscus lenses could be categorized into two kinds: positive meniscus lenses and negative meniscus lenses. A Positive Meniscus Lens is more curved on the convex side than on the concave side, and its edge thickness is greater than its central thickness, contributing to a positive focal length. In contrast, a Negative Meniscus Lens is more curved on the concave side than on the convex side, and its central thickness is greater than its edge thickness, contributing to a negative focal length. Positive Meniscus Lenses converge light is utilized to reduce the focal length when used in conjunction with other lenses and increase the numerical aperture (NA) of existing optical modules without introducing significant spherical aberration. These functions are quite useful for image instruments to increase the resolution, and for focusing lasers to shrink the spot diameter when the incident beam width is rather large, providing diffraction-limited performance and better precision for laser processing. A negative meniscus lens diverges light and functions in just the opposite manner as a positive meniscus lens, to increase the focal length, reduce the NA of the optical assemblies, and expand beams. The meniscus lens is often hired as a corrective lens, and can also be used as a beam condenser of an illumination system. In addition, meniscus lenses with appropriate thicknesses can also eliminate chromatic aberration.


meniscus lens


Achromatic Doublet Lens:

An Achromatic Doublet Lens is a bulk optical element, often consisting of two cemented concave and convex single lenses made from different optical glass materials of compensating dispersion properties. Achromatic doublet lens has the distinctive feature of inducing minimizing chromatic aberration in an optical module (Chromatic aberration is the shift of refractive indices resulting from different wavelengths when the incident light source consists of multi-colored radiations, the consequence is blurring of spots on the focal plane). It is also possible to correct the spherical and on-axis comatic aberration using achromatic doublet lenses.


achromatic doublet lens alt=


Plano Convex/concave Cylindrical Lens:

Plano Convex/concave Cylindrical Lens is, in essence, a cuboid with an outward extending/inward curved structure, and thus a positive effective length. The fundamental function of the plano-convex cylindrical lens is to condense/diverge a matrix of laser beams and modulate the aspect ratio of the image. As a plate version of a plano-convex/concave lens, a plano-convex/concave cylindrical lens performs better at infinite conjugate ratios (here we refer to the absolute value, and the value becomes disadvantageous when below 5:1). What discriminates a plate PCX/PCV and a cylindrical PCX/PCV is that the former diverges lights in two dimensions, the later expands light beam in one.


The prior nature of plano-convex/concave cylindrical lenses, which is making a two-dimensional light beam becomes a linear laser line, can be leveraged in diversified applications like the coupling of a slit input of laser diodes, changing the aspect ratio of an image, laser scanners, dye lasers, spectroscopies, and receivers of energies in linear detectors. A plano-convex/concave lens can either modulate the aspect ratio of an image or create a line image from the point light beam source. A PCX cylindrical lens is also often hired to collect collimated light beams to generate a thin line.


Another crucial application of plano-convex/concave cylindrical lens is anamorphic beam shaping, which just refers to correcting the elliptical-shaped laser beam generated from a laser diode into a circular-shaped one. The elliptical laser beam is the consequence of a rectangular Fresnel aperture and is undesirable because this implies a larger beam area which wastes more power, fewer homogeneities, and a terrible Gaussian Beam Profile. A pair of plano convex/concave cylindrical lenses could be used to circularize the elliptical beams. During the test, a pair of plano-convex/concave cylindrical lenses are positioned so that lenses are orthogonal as shown in the figure. From the result, we can conclude that using a pair of plano-convex/concave cylindrical lenses to circularize the elliptical beam is a high-transmission, balance-shape, astigmatism-attenuated approach.


plano convex cylindrical lens  plano concave cylindrical lens


Ball and Half Ball Lenses :

Ball Lenses are a special form of biconvex lenses which inherit the geometry of a ball (which implies completely spherical surfaces), manufactured from a single material with the optical transmission sited in the wavelength region of interest. The predominant function of ball lenses is light collimation/coupling for optical fibers (e.g. laser to fiber coupling, fiber to fiber coupling), with other versatile possibilities to be incorporated in miniature optics (e.g. Barcode Scanning, Sensors, or as objective lenses, etc.). Ball Lenses could also be considered as pre-forms aspheric lenses. One advantage of a ball lens is its short  Back Focal Length (BFL), a trait that cuts down the distance from the optic to the fiber and is exceptionally useful when the installation space is rather tight, and compact dimension could simultaneously reduce the production cost. Additionally, a ball lens is rotationally symmetric, which enhances the ease of aligning and positioning.


Half-Ball Lenses are variants of ball lenses, obtained through simply cutting the ball lenses in half. Due to the ease of mounting brought by the one flat surface, half ball lenses are ideal for applications where more compact designs are required.


ball lens  half ball lens


Rod Lenses:

Rod Lenses are optical lenses in the form of a round rod and focus collimated beams into one dimension. Light is transferred against the circumference of the lens, therefore the circumferences of the rod lenses are precision polished, whilst the two flat ends are irrelevant to optical processing, but could be ground also. The uses of rod lenses include collimation of divergent light, linear focusing, and image inversion lenses between the objective and the ocular lenses in a rigid endoscope (An medical instrument to observe inside human bodies). A rod lens could also be utilized as a light pipe (An optical component that transfers light between the flat ends using total inter reflection.)



Aspheric Lens:

Aspheric Lens is an optical lens with the geometries of a non-spherical optical front (that is, the radius of curvature varies with the distance from the optical axis). The unique feature of an aspheric lens is the minimized spherical aberrations. Spherical aberrations intrinsic in spherical lenses, due to differences in the optical paths, the focal points of lights closer to the optical axis tend to be more forward than that of the lights incident at the edges of the spherical lenses, resulting in blurring of the image and increasing spot width. Compared with spherical lenses, Aspheric lenses exhibit spherical aberrations reduced to a dramatic extent, leading to enhanced image resolution, and spot diameters that are several orders less than the spot diameter of spherical lenses. An aspheric lens allows a larger numerical aperture (low f-number) and therefore increases the light throughput, achieving higher power efficiencies. Incorporation of aspheric lenses into lens modules also could help to reduce the element number with the exemption of excessive optics for correction of spherical aberrations, enabling compact and simplified design.

aspheric lens


Axicons:

An Axicon or a Conical Lens is an optical lens with a conical side and flat side, it is defined by its base angles (referred to as the physical angles) and its apex angle. The working principle of an axicon is that it uses interference to create a focal line along the optical axis. Axicons could be utilized to generate an approximation of a diffraction-free Bessel beam, which is a beam consisting of a series of concentric rings having equal power through transforming collimated Gaussian beam in the near field. Although a Bessel beam does not exist in real life because it would require infinite energy to create, axicons offer a good analog by maintaining the non-diffractive Bessel beam properties over a distance much longer than a similar Gaussian beam. A plano-convex axicon could also be used to convert laser light into an annular shape by taking the projection in the far field, and the ring’s thickness will be 1/2 of the incident laser beam’s diameter. 



EFL-700.0mm Dia30mmxLength32mm N-BK7 Plano Concave Cylindrical   Lenses Uncoated

EFL-700.0mm Dia30mmxLength32mm N-BK7 Plano Concave Cylindrical Lenses Uncoated

EFL-25.0mm Dia10mmxLength12mm N-BK7 Plano Concave Cylindrical   Lenses Uncoated

EFL-25.0mm Dia10mmxLength12mm N-BK7 Plano Concave Cylindrical Lenses Uncoated

EFL-3.9mm Dia4mmxLength8mm N-BK7 Plano Concave Cylindrical Lenses 650-1050nm AR Coating

EFL-3.9mm Dia4mmxLength8mm N-BK7 Plano Concave Cylindrical Lenses 650-1050nm AR Coating